Flavones inhibit the hexameric replicative helicase RepA
نویسندگان
چکیده
منابع مشابه
Flavones inhibit the hexameric replicative helicase RepA.
Helicases couple the hydrolysis of nucleoside triphosphates (NTPs) to the unwinding of double-stranded nucleic acids and are essential in DNA metabolism. Thus far, no inhibitors are known for helicases except heliquinomycin isolated from Streptomyces sp. As the three-dimensional structure of the hexameric replicative DNA helicase RepA encoded by the broad host-range plasmid RSF1010 is known, th...
متن کاملThe hexameric structure of the human mitochondrial replicative helicase Twinkle
The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering ...
متن کاملHexameric RSF1010 helicase RepA: the structural and functional importance of single amino acid residues.
In the known monoclinic crystals the 3-dimensional structure of the hexameric, replicative helicase RepA encoded by plasmid RSF1010 shows 6-fold rotational symmetry. In contrast, in the cubic crystal form at 2.55 A resolution described here RepA has 3-fold symmetry and consists of a trimer of dimers. To study structure-function relationships, a series of repA deletion mutants and mutations yiel...
متن کاملThe RepA protein of plasmid RSF1010 is a replicative DNA helicase.
The RepA protein of the mobilizable broad host range plasmid RSF1010 has a key function in its replication. RepA is one of the smallest known helicases. The protein forms a homohexamer of 29,896-Da subunits. A variety of methods were used to analyze the quaternary structure of RepA. Gel filtration and cross-linking experiments demonstrated the hexameric structure, which was confirmed by electro...
متن کاملA flexible brace maintains the assembly of a hexameric replicative helicase during DNA unwinding
The mechanism of DNA translocation by papillomavirus E1 and polyomavirus LTag hexameric helicases involves consecutive remodelling of subunit-subunit interactions around the hexameric ring. Our biochemical analysis of E1 helicase demonstrates that a 26-residue C-terminal segment is critical for maintaining the hexameric assembly. As this segment was not resolved in previous crystallographic ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2001
ISSN: 1362-4962
DOI: 10.1093/nar/29.24.5058